How dangerous without venting batteries?

Van Living Forum

Help Support Van Living Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.

GrayWhale

Well-known member
Joined
Jul 21, 2013
Messages
343
Reaction score
1
Only TWO 12V Marine Type batteries, that are sometimes used, so not daily. Charging is done with a 10amp car battery charger, that's inside the van. How important is it to vent the batteries outside with a hose?

If the 2 front windows are always cracked open (rain guards) and the 2 small side, conversion van windows are opened; would this be enough to vent out some fumes?

With no external hose vent, is it better to have the batteries in a box or just bare in the open?  I would imagine that an enclosed box or "battery box" would cause the fumes to puddle, right? Thanks for your help.
 
Just don't allow concentration in a sealed box (boom), venting into a living space is fine as long as its not all sealed up when the batts are bubbling
 
The voltage the 10 amp charger brings the batteries to, and how long you, or it, decides to hold that voltage will dictate how much gassing occurs.

Some estimated numbers: a newish still healthy pair of marine batteries in parallel ( 200Ah capacity) drained to 50% state of charge, at a 10 amp charging rate, will require about 8 hours to get to 14.5ish volts, and then another 4 hours before they reach the 100% charged range. Gassing will generally start in the 14.1 to 14.2volt range and continue for the remainder of the charge. Lowering voltage will reduce the gassing, but extend the time required to reach anywhere near full charge. Not achieving true full charge somewhat regularly will have battery capacity shrink prematurely, never to return.

Less healthy batteries when charging will rise to 14+ volts faster than their healthier brethern, and begin gassing earlier, and take longer to fully recharge, gassing that whole time. Aging batteries require watering more often because of this.

Sulfuric acid mist is a known carcinogen.
I can smell a charging battery at 14.2v or higher from a surprising distance, and prefer not to. Venting into the living spacethat itself is not well ventilated, in my opinion, is not fine.

Others will have the opposite opinion.

I'd not hang out next to charging batteries in an enclosed area without a lot of air exchange going on. The explosion risk is there but much less of a concern to me than absorbing sulfuric acid mist through my lungs.
 
With only a 10 amp charger connected to two batteries there isn't much electrolysis generating hydrogen.  You need the common sense precautions.  Don't smoke or have flames in the van without opening a door for a while first.
 
elecrolysis produces hydrogen and oxygen, but those gasses take a sulfuric acid mist with them out the baattery's caps. The 02 and H are flammable when concentrated, but the sulfuric acid mist is what one can smell and possibly have irritate their breathing passages and eyes.

The concentration levels of sulfuric acid mist is dictated by how much gassing is going on, and how much ventilation exists.

Without quantifying these variables no one can say it is safe, or unsafe.

Sulphuric acid is a dense oily liquid clear to dark brown in colour.  It mixes with water in all proportions and is corrosive and non‐flammable.  
Sulphuric acid is used in the manufacture of chemicals, detergents, dyes, explosives and fertilisers.  It is the acid in lead acid batteries.  Sulphuric 
acid is also used in metal cleaning and electroplating, and solutions of metal sulphates and sulphuric acid are used in  the electrowinning of 
metals. 
The current SWA WES for sulphuric acid mist is a time weighted average (TWA) value of 1 mg/m3, based on the 1991 American Conference of 
Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV®). 
Sulphuric acid mists have been long recognised as corrosive to teeth and irritant to the respiratory system.  In 1992, the International Agency 
for Research on Cancer (IARC) classified strong acid mists containing sulphuric acid as known to be carcinogenic to humans (Category 1). 
In  2001,  the United  Kingdom  Health  and  Safety  Executive  (UK  HSE)  issued  a  Chemical  Hazard  Alert Notice  based  on  research  done by  the 
European  Sulphuric  Acid  Association,  advising  that  the  occupational  exposure  standard  of  1.0  mg/m3  may  not  protect  against  chronic 
inflammation  of  the  larynx.    It  was  suggested  that  exposure  to sulphuric  acid  be  reduced  to  below  0.3  mg/m3  in  order  to  control  against 
inflammation.  In 2004, the ACGIH issued a revised TLV® of 0.2 mg/m3 measured as thoracic particulate mass, but maintained an A2 Suspected 
Human Carcinogen rating. 
In 2007, the European Commission’s Scientific Committee on Occupational Exposure Limits (SCOEL) reviewed the available OELs for sulphuric 
acid mist.  From animal studies they noted “evidence of slight changes in the laryngeal epithelium at the lowest concentration tested, 0.3 mg/m3.  
Other experimental studies in a range of animal species suggest respiratory tract effects on  repeated exposure to concentrations around 0.3 
mg/m3, with the possibility of effects of some health significance even at concentrations down to about 0.1 mg/m3”.  They concluded that “long‐
term exposure should be maintained below 0.1 mg/m3 in order to provide sufficient reassurance of avoidance of possible adverse consequences 
for the respiratory tract epithelium.  Hence SCOEL recommends an 8h TWA limit of 0.05 mg/m3 in order to satisfy this requirement”. 
In 2012, SCOEL added Annex 2 Sampling aspects to their documentation.  Based on the aerosol size of acid mists and the target organ including 
the upper respiratory tract and larynx, SCOEL concluded that sampling should be as the inhalable fraction of airborne aerosol.  The AIOH concurs 
with this.  Collection of the acid aerosol on a quartz fibre filter for analysis by ion chromatography is also recommended. 
Studies  of  the  carcinogenicity of  sulphuric  acid mist  have  frequently  been  undertaken  without exposure measurements  and with  potential 
confounding exposures not well accounted for.  In a review of 25 epidemiology studies a moderate association was found between exposure to 
sulphuric acid mist and laryngeal  cancer.   However, while  the  data  suggest a  dose‐response  relationship,  the  biological  plausibility and  the 
possible carcinogenic mechanism remained uncertain. 
Non‐malignant respiratory effects exist at 1 to 3 mg/m3 while short‐term reduced lung clearance rates were observed at 0.1 mg/m3.  Worker 
exposure to about 0.5 mg/m3 has been reported to cause an average of 5 acute effect symptoms (e.g. sneezing, irritated nose, cough, runny 
nose and dry nose).  Practical experience within the AIOH Exposure Standards Committee members has found exposure to 0.1 mg/m3 is clearly 
perceptible, 0.2 mg/m3 can cause coughing, sneezing and shortness of breath while exposure to 1 mg/m3 is intolerable to many people.   
Chronic effects have been noted in rats exposed at 0.5 and 1.0 mg/m3 but effects at 0.2 mg/m3 were minimal.  A review of animal studies found 
effects noted in several species at exposure levels above 1 mg/m3 while effects were not noted at 0.1 mg/m3. 
The TWA occupational exposure limit for sulphuric acid mist recommended by the AIOH is 0.1 mg/m3, to be measured as the inhalable aerosol 
fraction according  to AS 3640.  This  standard is  set  to minimise  the incidence of irritant and  respiratory effects and of laryngeal cancer.  A 
recommended STEL of 0.5mg/m3 is feasible but may not be particularly useful in its purpose of warning of possible acute effects, considering 
delay in reporting due to the requirements of laboratory analysis of collected samples.  There is no doubt that such a level causes acute health 
effects even after a single short term exposure, to which the usual response in most people is withdrawal from the exposure or use of respiratory 
protection. 
Currently, no feasible biomarker is available to be used for biological monitoring. 

source:
https://www.aioh.org.au/documents/item/67
 
Why not mount them under the van?
Any acid that boils over will eat up your floor.
The vapors are definetly not good for you and smell like rotten eggs.
 
If you have the funds, save yourself the worry and get AGMs. Lithiums might even be better, but I think they're more expensive than AGMs.
 
Completely up to you as far as your tolerance level for the fumes. If you have a Fantastic Fan or equivalent pulling the air out, that's better. Your 10 amp charger is not likely to overcharge the battery, it's the rate of charge in amps and the voltage that is being applied that you need to consider.

You didn't say what kind of charger but if it is the typical box store Schumaker style "smart" charger then you likely won't see charging over 14.2 at all. I've read that at 14.4 is when the boiling begins. An answered question on Amazon for the 12 amp charger was: "When charging the terminal voltage is normally 14.4 Once the charger is removed, the voltage of the fully charged battery will drift down to 12.5." I cannot vouch for those numbers.

Main thing is that if it is seriously depleted then that's when the charger will max it out (voltage) as best as it can. That is when you want the increased ventilation, preferably done outdoors. When in a more normal lighter state of discharge then your fan and opened windows should suffice.

The forum owner, Bob, has charged FLA batteries indoors for a decade with no apparent ill effects, (although he used to have dark hair and now its gone white, sulpheric acid bleaching??)
 
Top